

[FRTSSDS- June 2018] DOI: 10.5281/zenodo.1293871 ISSN 2348 - 8034 Impact Factor- 5.070

GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES MULTIVALUED FIXED POINT THEOREM IN NON ARCHIMEDEAN VECTOR

SPACE

Amita Joshi

Department of Mathematics, IPS Academy, Indore, India

ABSTRACT

In this paper we extend Theorem A for two mappings.

Keywords- Non-Archimedean normed space, multivalued contractive mapping.

I. INTRODUCTION

Let $(X, \|.\|)$ be a non-Archimedean normed space (for definition see [5]). We say that $(X, \|.\|)$ is spherically complete if every shrinking collection of balls in X has a non-empty intersection.

We denote by C(X) the family of all non-empty compact subsets of X, by CB(X) the family of all non-empty closed bounded subsets of X, and by H the Hausdorff metric on CB(X) induced by d ; that is $H(A,B) = \max\{\sup\{d(a,B) ; a \in A\}, \sup\{d(b,A) ; b \in B\}$ for all A, B in CB(X), where $d(x,A) = \inf\{d(x,y) ; y \in A\}$ for all x in X and $A \subset X$. $T : X \rightarrow CB(X)$ is said to be multivalued contractive (non-expansive) mapping if H(Tx,Ty) < ||x - y|| for any distinct points in X.

 $(H(Tx,Ty) \ \leq \ ||x - y|| \text{ for any } x,y \in X \text{ })$

It is known that a contractive mapping in a complete metric space need not to have a fixed point see for examples ([1],[4]).

Petalas and Vidalis [3] have proved that in a non-Archimedean spherically complete normed space $(X, \|.\|)$ every contractive mapping has a unique fixed point.

II. MAIN RESULTS

Kubiaczyk and Ali [2] extended this result for multivalued mappings and proved the following : TheoremA . Let X be a non-Archimedean spherically complete normed space. If $T: X \to C(X)$ is a mapping such that H(Tx,Ty) < ||x - y|| for any two distinct points x and y in X. Then T has a fixed point.

In this chapter we extend Theorem A for two mappings. We prove the following:

 $\begin{array}{ll} \mbox{Theorem 1} . \mbox{ Let } X \mbox{ be a non-Archimedean spherically complete normed space. If } T_1, T_2: X \rightarrow CB(X) \mbox{ is a mapping such that} \\ (1) & H(T_1x,T_2y) \ < \ \|x-y\|, \end{array}$

for any distinct points $x,y \in X$. Then T_1 and T_2 have a common fixed point in X. i.e. there exists $z \in X$ such that $z \in T_1 z$ and $z \in T_2 z$.

Proof. Let $B_a = B(a, d(a, T_1a) \land d(a, T_2a))$ denote the closed sphere centered a with the radius $r = \min \{d(a, T_1a), d(a, T_2a)\}$ and let

 $A=\{B_a\,;\,a\in X\,\,\}$ be the collection of all these spheres for all $a\in X.$ The relation

208

(C)Global Journal Of Engineering Science And Researches

THOMSON REUTERS [FRTSSDS- June 2018] DOI: 10.5281/zenodo.1293871 $B_a \leq B_b iff B_b \subseteq B_a$, is a partial order . Consider a totally ordered subfamily A_1 of A. From the spherical completeness of X, we have \cap B_a = B $\neq \phi$ $B_a \in A_1$ Let $b \in B$ and $B_a \in A_1$. Using $B_b \subseteq B_a$, we have $||\mathbf{a} - \mathbf{b}|| \leq d(\mathbf{a}, \mathbf{T}_1 \mathbf{a}) \wedge d(\mathbf{a}, \mathbf{T}_2 \mathbf{a})$ Then if $x \in B_b$, $||x - b|| \le d(b, T_1b) \land d(b, T_2b)$ $\leq \max \{ \|\mathbf{b} - \mathbf{a}\|, \|\mathbf{a} - \mathbf{d}\|, \inf \|\mathbf{d} - \mathbf{c}\| \}$ $c \in T_2 b$ where $d \in T_1a$ be such that

 $||a - d|| = d(a, T_1a) + \in (\text{if for example } \{d(a, T_1a) \land d(a, T_2a)\} = d(a, T_1a), \text{ then}$ $||x - b|| \le \max\{d(a, T_1a) \land d(a, T_2a), d(d, T_2b)\} + \in$ $\leq \max\{d(a, T_1a) \land d(a, T_2a), H(T_1a, T_2b)\} + \in$

Hence

 $\leq \quad [d(a, T_1a) \wedge d(a, T_2a)] \ + \ \in.$

 $||x - a|| \le \max \{ ||x - b||, ||b - a|| \}$ $\leq [d(a, T_1a) \wedge d(a, T_2a)] + \in$. Since \in is arbitrary, so making $\in \rightarrow 0$, these means $||\mathbf{x} - \mathbf{a}|| \leq [d(\mathbf{a}, T_1\mathbf{a}) \wedge d(\mathbf{a}, T_2\mathbf{a})]$.

So $x \in B_a$ and $B_b \subseteq B_a$, for every $B_a \in A_1$.

RESEARCHERID

By Zorn's lemma, A has a maximal element say Bz, for some $z \in B$. We claim that $z \in T_1 z$ and $T_2 z$. Let $z \neq T_1 z \cap T_2 z$ and $\check{z} \in T_1 z \cup T_2 z$ be such that $\check{z} \in T_2 z$

 $||z - \check{z}|| \leq \min \{ d(z, T_1 z), d(z, T_2 z) \} + \in.$ (2)Now we shall show that $B\check{z}\subset Bz$. If $y \in B\check{z}$ then $||\check{z} - y|| \leq d(\check{z}, T_1\check{z}) \wedge d(\check{z}, T_2\check{z}) \leq d(\check{z}, T_1\check{z})$

(3) $\leq H(T_2z, T_1\check{z}) \leq d(z, \check{z})$ $< [d(z, T_1z) \land d(z, T_2z)] + \in.$

By (2) and (3), we have

 $||y - z|| \le \min \{ ||y - \check{z}|| , ||\check{z} - z|| \}$ $\leq \ [d(z, T_1z) \wedge d(z, T_2z)] \ + \ \in.$ Because this inequality hold for any \in , so making $\in \rightarrow 0$, we get $||y - z|| \leq d(z, T_1z) \wedge d(z, T_2z)$, This means that $y \in Bz$ so $B\check{z} \subset Bz$. On the other hand $\|\check{z} - y \,\| \ > H(T_2 z, \, T_1 \check{z} \,) \ \ge \ d(\check{z} \,, \, T_1 \check{z})$ $\geq \min \{ d(\check{z}, T_1\check{z}) \land d(\check{z}, T_2\check{z}) \}.$

Hence $z \notin B\tilde{z}$, but $z \in Bz$. Therefore $B\tilde{z} \subseteq Bz$, and this contradicts the maximality of Bz. Thus T_1 and T_2 have a common fixed point. This completes the proof of the theorem.

209

(C)Global Journal Of Engineering Science And Researches

ISSN 2348 - 8034

Impact Factor- 5.070

[FRTSSDS- June 2018] DOI: 10.5281/zenodo.1293871

ISSN 2348 - 8034 Impact Factor- 5.070

Remark 1. If the mappings T_1 and T_2 are functions. Theorem 1 state that the pair of functions such that, with condition (1) (not necessary continuous) has a common fixed point z. Remark 2. If we put $T_1 = T_2 = T$ in Theorem 1, we obtain result due to Kubiaczyk and Ali [2].

REFERENCES

- [1] M. Edelstein: On fixed and periodic points under contraction mappings, J. ondon Math. Soc., 37(1962), 74-79.
- [2] Kubiaczyk, I. and Ali, N.M. : A multivalued fixed point theorem in non-Archimedean vector spaces, Novi Sad J.Math. 26(2)(1996),111-115.
- [3] Petalas, C. and Vidalis, T : A fixed point theorem in non-Archimedean vectr spaces, Proc. Amer. Math. Soc. 118(1993),819-821.
- [4] Rakotch, E. : A note on contractive mappings Proc. Amer. Math.Soc., 13(1962), 459-465
- [5] Van Roovji, A.C.M.: Archimedean Functional Analysis, Marcel Dekker, New York (1978

