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In this paper we extend Theorem A for two mappings. 
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I. INTRODUCTION 
 

Let (X, ||.||)be a non-Archimedean normed space (for definition see [5]). We say that (X, ||.||) is spherically complete 

if every shrinking collection of balls in X has a non-empty intersection. 

 

We denote by C(X) the family of all non-empty compact subsets of X, by CB(X) the family of all non-empty closed 
bounded subsets of X, and by H the Hausdorff metric on CB(X) induced by d ; that is 

H(A,B)   =    max{sup{d(a,B) ; a  A} , sup{d(b,A) ; b B } 

for all A, B in CB(X) , where d(x,A)  =   inf{d(x,y) ; y  A} for all x in X and  A   X. 

T : X CB(X) is said to be multivalued contractive (non-expansive) mapping if 
 H(Tx,Ty)    <   ||x - y|| for any distinct points in X. 

  (H(Tx,Ty)      ||x - y|| for any x,y X ) 
 

It is known that a contractive mapping in a complete metric space need not to have a fixed point see for examples 

([1],[4]). 

 

Petalas and Vidalis [3]  have proved that in a non-Archimedean spherically complete normed space (X, ||.||) every 

contractive mapping has a unique fixed point. 

 

II. MAIN  RESULTS 
 
Kubiaczyk and Ali [2] extended this result for multivalued mappings and proved the following : 

TheoremA .  Let X be a non-Archimedean spherically complete normed space. If  T : X  C(X) is a mapping such 
that H(Tx,Ty)    <   ||x - y|| for any two distinct points x and y in X. Then T has a fixed point. 

 

In this chapter we extend Theorem A for two mappings. We prove the following: 

 

Theorem 1 .  Let X be a non-Archimedean spherically complete normed space. If  T1, T2 : X  CB(X) is a mapping 
such that 

(1)                 H(T1x,T2y)    <   ||x - y||, 

for any distinct points x,y X. Then T1 and T2 have a common fixed point in X.  i.e. there exists z  X such that  z 

 T1z  and z  T2z . 
 

Proof .  Let Ba  =  B(a, d(a, T1a)d(a, T2a)) denote the closed sphere centered a  with the radius  r  =  min {d(a, 
T1a),d(a, T2a)} and let  

A  =  {Ba ; a  X } be the collection of all these spheres for all a  X. 
The relation 
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  Ba   Bbiff   BbBa, 
is a partial order . Consider a totally ordered subfamily A1 of A. From the spherical completeness of X, we have 

    ∩  Ba   =  B   

      Ba  A1  

Let  b B and Ba  A1  .  Using  Bb  Ba  , we have 

   ||a - b||    d(a, T1a)d(a, T2a) 

Then if  x Bb  , 

  ||x - b||  d(b, T1b)d(b, T2b)   

   max { ||b - a||  , ||a - d|| , inf ||d - c||  } 

      c T2b 

where d  T1a be such that 

||a - d||   =  d(a, T1a) +  (if for example {d(a, T1a)d(a, T2a)}=  d(a, T1a), then 

  ||x - b||   max{d(a, T1a)d(a, T2a), d(d, T2b) } +  

 max{d(a, T1a)d(a, T2a), H(T1a, T2b) } +  

 

 [d(a, T1a)d(a, T2a)]  +  . 
Hence 

||x - a||      max { ||x - b||   , ||b - a|| } 

        [d(a, T1a)d(a, T2a)]  +  . 

Since   is arbitrary, so making   0, these means 

||x - a||      [d(a, T1a)d(a, T2a)]  . 

So  x Ba  and  Bb   Ba  , for every  Ba A1. 
 

By Zorn’s lemma , A has a maximal element say Bz, for some  z  B. 

We claim that z  T1z and T2z. 

Let  z  T1z ∩ T2z  and   ž    T1z U T2z  be such that   ž   T2z  

 

(2)  ||z - ž ||      min {d(z, T1z),d(z, T2z)}  +  . 

Now we shall show that  BžBz. 

If  yBž  then ||ž - y ||      d(ž , T1ž) d(ž , T2ž)       d(ž , T1ž) 

 

(3)    H(T2z, T1ž)   <   d(z, ž) 

    <   [d(z, T1z) d(z, T2z)]  +  . 

 
By (2) and (3), we have 

||y - z||      min { ||y - ž ||   , || ž  - z|| } 

   [d(z, T1z)d(z, T2z)]  +  . 

Because this inequality hold for any   , so making  0, we get 

||y - z||   d(z, T1z)d(z, T2z) , 

This means that  yBz  so  BžBz. 
On the other hand 

||ž - y ||   >H(T2z, T1ž )      d(ž , T1ž) 

min{d(ž , T1ž) d(ž , T2ž)}. 
 

Hence z  Bž,  but  z Bz.  Therefore  BžBz, and this contradicts the maximality of Bz. 
Thus T1 and T2 have a common fixed point. 
This completes the proof of the theorem. 

 

 

III. CONCUSION 
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Remark 1 .  If the mappings T1 and T2  are functions. Theorem 1 state that the pair of functions such that, with 

condition (1) (not necessary continuous) has a common fixed point z.  

Remark 2 .  If we put  T1 = T2  =  T  in Theorem 1, we obtain result due to Kubiaczyk and Ali [2]. 
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